Shared-Use Vehicle Services: An Evolutionary Path to Leverage Vehicle Automation

Susan Shaheen, Ph.D.
Co-Director, Transportation Sustainability Research Center
Adjunct Professor, University of California, Berkeley
Autonomous Vehicle Workshop 2014
July 18, 2014
Overview

- Autonomous Vehicles (AVs)
- Shared-Use Mobility Services
 - Carsharing
 - On-demand ride services
- Scenario Planning Study
 - AV Applications
 - Evolutionary Path of AVs
Autonomous Vehicles (AVs)

- Self-driving car, driverless car, driver-free car
- Vehicle operation without active physical control or monitoring by human driver
- Senses environment with advanced technologies
 - Radar/lidar, GPS, mapping, computer vision
Shared-Use Mobility Services

Carsharing: Short-term vehicle access

– Members share a vehicle fleet maintained, managed, and insured by third-party operator
– Self-service available 24/7
– Rates include fuel, insurance, and maintenance
– July 2013: 1.15 million members sharing 21,000 vehicles in the Americas
Carsharing Membership Growth

U.S. Canada Mexico Brazil Americas

<table>
<thead>
<tr>
<th>Year</th>
<th>U.S.</th>
<th>Canada</th>
<th>Mexico</th>
<th>Brazil</th>
<th>Americas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>12,098</td>
<td>3,909</td>
<td>750</td>
<td>98</td>
<td>16,007</td>
</tr>
<tr>
<td>2003</td>
<td>25,640</td>
<td>7,007</td>
<td>10,001</td>
<td>347</td>
<td>32,647</td>
</tr>
<tr>
<td>2004</td>
<td>52,347</td>
<td>11,932</td>
<td>26,878</td>
<td>910</td>
<td>62,348</td>
</tr>
<tr>
<td>2005</td>
<td>76,420</td>
<td>15,663</td>
<td>39,664</td>
<td>98</td>
<td>88,352</td>
</tr>
<tr>
<td>2006</td>
<td>102,993</td>
<td>26,878</td>
<td>53,916</td>
<td>347</td>
<td>118,656</td>
</tr>
<tr>
<td>2007</td>
<td>184,292</td>
<td>39,664</td>
<td>67,526</td>
<td>910</td>
<td>211,170</td>
</tr>
<tr>
<td>2008</td>
<td>279,234</td>
<td>53,916</td>
<td>78,856</td>
<td>347</td>
<td>318,898</td>
</tr>
<tr>
<td>2009</td>
<td>323,681</td>
<td>67,526</td>
<td>101,502</td>
<td>910</td>
<td>377,597</td>
</tr>
<tr>
<td>2010</td>
<td>448,574</td>
<td>78,856</td>
<td>147,670</td>
<td>347</td>
<td>516,198</td>
</tr>
<tr>
<td>2011</td>
<td>560,572</td>
<td>101,502</td>
<td>147,670</td>
<td>910</td>
<td>639,775</td>
</tr>
<tr>
<td>2012</td>
<td>806,332</td>
<td>147,670</td>
<td></td>
<td></td>
<td>909,494</td>
</tr>
<tr>
<td>2013</td>
<td>995,926</td>
<td></td>
<td></td>
<td></td>
<td>1,149,134</td>
</tr>
</tbody>
</table>

TSRC
Transportation Sustainability RESEARCH CENTER
UNIVERSITY OF CALIFORNIA BERKELEY
Carsharing Vehicle Growth

<table>
<thead>
<tr>
<th>Year</th>
<th>U.S.</th>
<th>Canada</th>
<th>Mexico</th>
<th>Brazil</th>
<th>Americas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>455</td>
<td>231</td>
<td>231</td>
<td>12</td>
<td>686</td>
</tr>
<tr>
<td>2003</td>
<td>696</td>
<td>397</td>
<td>397</td>
<td>18</td>
<td>1,093</td>
</tr>
<tr>
<td>2004</td>
<td>907</td>
<td>521</td>
<td>521</td>
<td>12</td>
<td>1,428</td>
</tr>
<tr>
<td>2005</td>
<td>1,192</td>
<td>599</td>
<td>599</td>
<td>18</td>
<td>1,791</td>
</tr>
<tr>
<td>2006</td>
<td>2,561</td>
<td>779</td>
<td>779</td>
<td>18</td>
<td>3,340</td>
</tr>
<tr>
<td>2007</td>
<td>5,104</td>
<td>1,388</td>
<td>1,388</td>
<td>12</td>
<td>6,492</td>
</tr>
<tr>
<td>2008</td>
<td>5,840</td>
<td>1,667</td>
<td>1,667</td>
<td>18</td>
<td>7,507</td>
</tr>
<tr>
<td>2009</td>
<td>7,722</td>
<td>2,046</td>
<td>2,046</td>
<td>58</td>
<td>9,768</td>
</tr>
<tr>
<td>2010</td>
<td>8,120</td>
<td>2,285</td>
<td>2,285</td>
<td>46</td>
<td>10,417</td>
</tr>
<tr>
<td>2011</td>
<td>7,776</td>
<td>2,605</td>
<td>2,605</td>
<td>40</td>
<td>10,399</td>
</tr>
<tr>
<td>2012</td>
<td>12,634</td>
<td>3,143</td>
<td>3,143</td>
<td></td>
<td>15,853</td>
</tr>
<tr>
<td>2013</td>
<td>16,811</td>
<td>3,910</td>
<td>3,910</td>
<td></td>
<td>20,807</td>
</tr>
</tbody>
</table>
Shared-Use Mobility Services

Transportation Network Companies (TNCs): on-demand ride services

- Matches drivers and passengers minutes before the trip is to take place
- Uses Internet and mobile platforms
- Driver rating system
- Cashless payment, credit card on file
Shared-Use Mobility Services

Ridesharing services
 – Target commute and social trips, incidental

Traditional taxis: vehicles for hire
 – Rides via passenger hail or prearrangement
 – Recent development of mobile e-hail/payment apps
IATS Scenario Planning Study

• Research sponsored by FHWA
• Decreased use of personal vehicle a common theme in scenario worlds – linked to limited energy, population in cities & envt’l concern
• Examine exemplars to demonstrate AVs
2030 & 2050 Scenario Worlds

2030 Scenario Worlds:
I. Natural Disaster World
II. Changing Economies World
III. Cyber-Terrorism World

2050 Scenario Worlds:
I. Climate Catastrophe World
II. Changing Production World
III. Resource Constrained World
AV Applications

• Potential future impacts on carsharing, on-demand ride services, and taxis
 – Drive up to carsharing users
 – Self-park, self-charge
 – Door-to-door service (like taxis/TNCs)

• Provide first- and last-mile connectivity to public transit

• Fill gaps in the transportation network
Evolutionary Path: 2020

• Scenario: Major automakers will have developed and released Level 3 AVs
 – Level 3 AVs: partially automated; driver can yield some control to the vehicle, but still required to pay attention and take control in certain situations

• Impacts to carsharing industry
 – Augmented safety features could decrease insurance costs
 – Increased user convenience (self-park/charge)

• Impacts to taxis/TNCs uncertain
 – Insurance likely impacted
Evolutionary Path: 2020

- Scenario: Level 4 AVs (fully self-driving) available for lower speeds in certain rights-of-way
- Provide public early exposure to fully-automated tech
 - First- and last-mile connectivity to transit
 - Ride services in office complexes, retirement communities
- Establish future models for fully-automated fleets and services
Evolutionary Path: 2030

- Scenario: Level 4 AVs more readily available
- Benefits to taxis/TNCs and carsharing
 - Autonomous repositioning to increase efficiency and meet customers needs
 - Self-refueling/charging
 - Return for routine maintenance
 - Communicate with smartphones for ridesharing; locate and pick up passengers along the way
Evolutionary Path: 2030

- Shared fully-autonomous vehicles could merge taxis, TNCs, and carsharing into one mode
- Carsharing users would be driven rather than driving
- Point-to-point mobility in shared autonomous taxi/TNC fleet
 - Eliminates labor costs
- Remain in cities with highest demand
Evolutionary Path: 2050

- Scenario: Increased production of AVs, decreased costs will make more affordable to general public
- AV owners incentivized to rent car out via p2p carsharing service when not in use
 - Augment on-demand point-to-point mobility
 - Penetrate into suburban and rural areas
- Effect of shared AVs
 - Reduce energy/environmental impact of private vehicle travel
 - Repurpose parking lots to parks and housing
Conclusions

AVs implemented into shared-use mobility can make a major impact on the future of transportation

– Public education and exposure
– Links to public transit
– Self-fueling, charging, and parking
– Full automation to integrate carsharing and ride services into one mode
– Point-to-point mobility for general public

Transportation Sustainability RESEARCH CENTER
UNIVERSITY OF CALIFORNIA BERKELEY