

Advanced 'drop-in' biofuels

Asilmar Biofuels Session Thomas D. Foust September 1, 2011

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

U.S. Transportation Fuel Needs National Advanced Biofuels Consortium

Diesel - 10.31

Jet Fuel - 4.07

Other Products - 7.01

Gasoline - 18.56

2030

126

71

30

Gasoline (cars & trucks) 137 bgy		2008	2
	Motor gasoline	137	
	Diesel	43	
States and a state of the states	Jet fuel	23	
Diesel (on-road, rail) 43 bgy	Products in a Barrel Other Distillates (heating oil) - 1.38	of Crude (Diesel -	(gal) 10.:
Aviation (jet fuel)	Heavy Fuel Oil (Residual) - 1.68	Jet Fuel	- 4.
23 bgy	Liquefied Petroleum Gases (LPG) - 1.72	ther Produ	ucts
		Gasoline	- 18

Source: Energy Information Agency

NATIONAL RENEWABLE ENERGY LABORATORY

NABC

Refinery Integration

- Three possible insertion points
- Develop new technologies that use today's infrastructure

Converting biomass into infrastructurecompatible materials

Process Strategies Technical

Progress

NABC matrix of technology and strategy teams will ensure development of complete integrated processes.

Virent Technology Overview

Biogasoline Product

Gasoline produced by the Virent Process is a high quality, premium hydrocarbon fuel

NARC: For Open

NATIONAL RENEWABLE ENERGY LABORATORY

State of Technology at Start of NABC Program: Fast Pyrolysis (RTPTM) Pyrolysis Oil

Solid Biomass

Moisture content 4-8% 0.5 mm< Particles < 6 mm

FOR NABC PURPOSES ONLY

- 510° C, <2 secs
- Biomass converted to liquid pyrolysis oil
- Fast fluidized bed, sand as heat carrier
- High yields →70 wt% liquid on woody biomass
- Light gas and char byproduct provide heat to dry feed and operate unit

Status

- Future "nth" plant costs competitive with ~\$80 \$120 crude
- Technologies still in r&d stage
 - Process robustness and scale-up
 - Utilization of lignin component
 - Refinery integration
 - Three to five years needed to develop to a pilot ready state
 - Three to five years needed for pilot scale demonstrations
 - Commercial ready end of this decade early 20 decade

