A European perspective

Dr Paul Nieuwenhuis

Centre for Automotive Industry Research

&

ESRC Centre for Business Relationships, Accountability, Sustainability & Society

8

Cardiff EV Centre of Excellence Cardiff University, Cardiff, Wales, UK

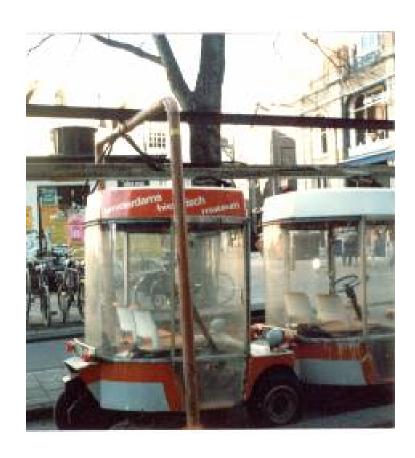
Regulatory drivers: US v EU

US

- Local air quality focus
- Right to access to cheap energy
- Global climate change responsibility not at the expense of US citizens
- Environment is responsibility of government and industry

EU

- Global air quality focus
- Energy rationing
- Global climate change responsibility
- Environment is individual responsibility


EU

Lagging behind in EVs, because:

Efficient diesel gives lower overall CO2 emissions for generating mix in most member states

Local air quality only a recent priority.

...despite some interesting experiments...

EV experiments & SNM*

- La Rochelle (F): experiment supported by PSA, involved issuing 50 citizens with EVs and providing charging points through the town
- Mendrisio (CH):experiment to turn the whole town into an EVprioritised environment
- ...and several others.

*= strategic niche management

CO2 is the primary policy driver in the EU

EU CO2 Regulation History

- 1994: proposal by then German minister Angela Merkel for 120g/km; Target date set for 2005
- 1996: target date moved to 2010
- 1997: Kyoto Protocol
- 1998: *voluntary agreement*: 140 g/km by 2008 (CEC-ACEA), 120 g/km target moved to 2012
- 2007: 2012 target changed to 130 g/km
- 2007: weight-based targets per manufacturer
- 2007: penalty system proposed
- 1/9/2008: EU parliament industry committee votes to postpone deadline to 2015
- 3/9/2008: EU parliament environment committee votes for increasing penalties and speeding up phase-in
- 2009: April, EU Regulation 443/2009
- 2012-2015: introduction of 443/2009 culminating in 130g/km average for all new cars sold in EU by 2015
- 2020: 95 g/km suggested by EU Commission

Industry's response

Make, Model	CO ₂ (g/km)	Powertrain/fuel
Citroën C3, DS3 1.6hdi	99	Diesel
Ford Fiesta 1.6 TDCi econetic	98	Diesel
Opel Corsa 1.3 CDTi 95 eco	98	Diesel
Peugeot 207 1.6 Hdi 90 FAP eco	99	Diesel
SEAT Ibiza 1.4 TDI ecomotive	98	Diesel
SEAT Leon 1.6 TDI ecomotive	89	Diesel
Smart Fortwo 0.8 cdi	89	Diesel But only 1 with
Toyota IQ 1.0	99	electric drive Petrol
Toyota Prius 1.8	89-92	Petrol-electric hybrid
VW Polo 1.2 TDI bluemotion	91	Diesel
VW Golf 1.6 TDI bluemotion	99	Diesel
Volvo C30 1.6 DRIVe start-stop	99 Paul Nieuwenhuis 2011	Diesel 7

EV is still not seen as the obvious answer...

Loremo LS (Germany)

Fuel consumption: 1.5l/100km

CO2: 41g/km

Weight: 450kg

Fuel: Diesel (EV to follow)

Power: 20 PS

Top speed: 160 km/h

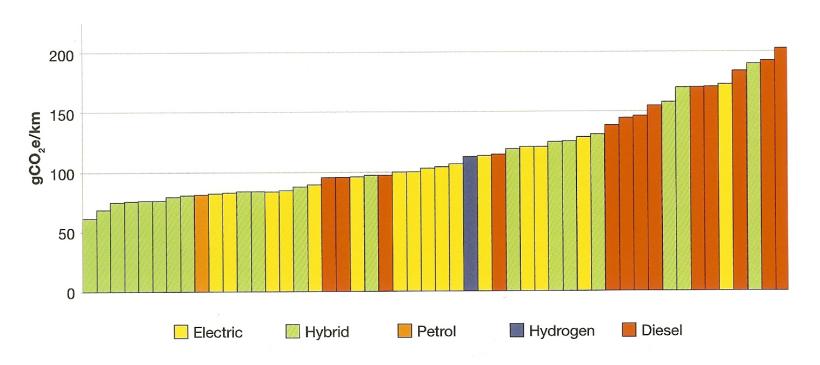
Chassis: aluminium

Body: PU

Gordon Murray Design (UK)

T25:

small 3-seater urban car Small petrol engine (660cc) Lightweight materials Vehicle weight: 450 kg


T27: electric version

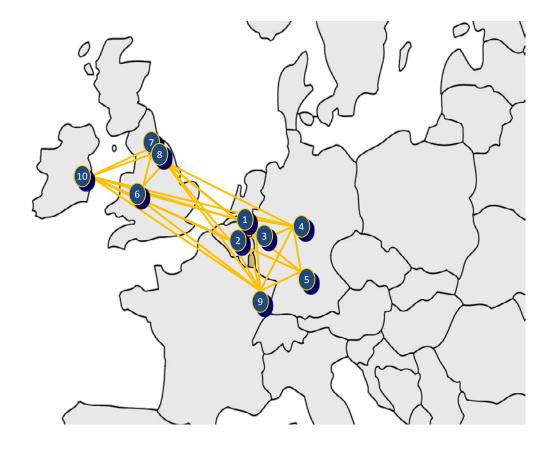
EV v IC

Results from RAC Future Challenge 2010 (UK generating mix)

Figure 4: Well-to-wheel CO₂e emissions using government conversion factors

Electrification of the car – path dependence?

e.g.: powertrain developments


1900	1910	1920	1960	1980	1990	2000	2010	2020	2030
magneto		\longrightarrow							
	Battery & coil					•			
	Self starter		Electronic fuel						→
	starter		injection						
				Electronic ignition					
					Engine managem				→
					ent				
						Hybrid electric		→	
0=2	D I						Plug-in hybrid		
								FCV?	
BEV -									→
				Paul Nieuw	enhuis 2011				12

ENEVATE

EU Interreg IVB project trying to capture lessons from the various EV experiments taking place in NW Europe.

Accelerating E-Mobility

The case of Norway

Europe's largest private EV market is an artificial, incentive-driven market...(CO2 is the main driver)

The question at Grønnbill Norge:

How to reduce incentives without losing the EV market?

Oslo

Oslo has around 12 years experience of private electric vehicle use

EV Incentives in Oslo:

Free entry to city

Free parking

Free charging

No sales tax

No road tax

Norway's EV cluster

Move About – 'zero hassle, zero emissions' – EV based fleet management and car sharing schemes in Norway, Sweden, Denmark.

Th!nk – EV maker (production moved to Finland).

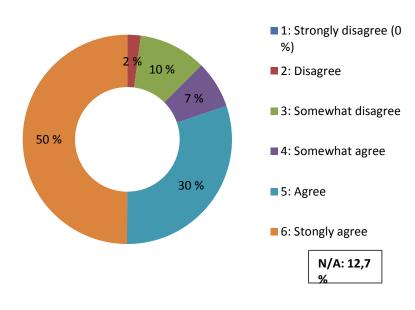
El-Bil Norge – maker of the Kewett Buddy EV.

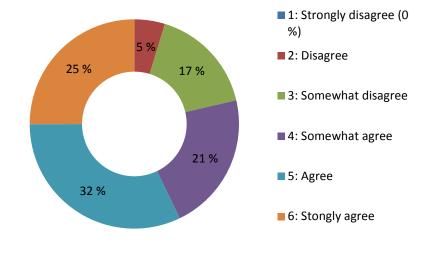
Norsk Hydro –energy, aluminium, automotive components

Kongsberg – automotive supply cluster

Etc.

End user views

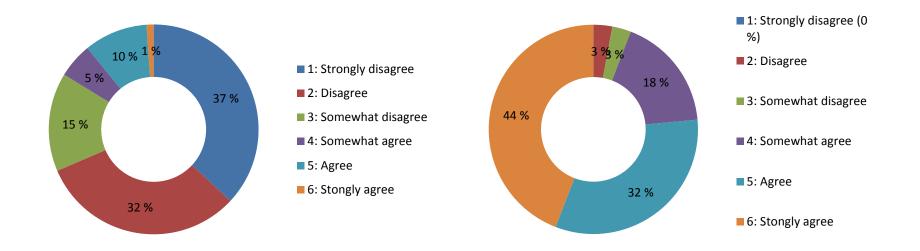

The Move About survey


www.moveabout.no

Move About survey results 1:

12. The car fulfills my needs for transport for work purposes

16. The car is suitable for winter use



N/A: 23,6 %

Move About survey results 2:

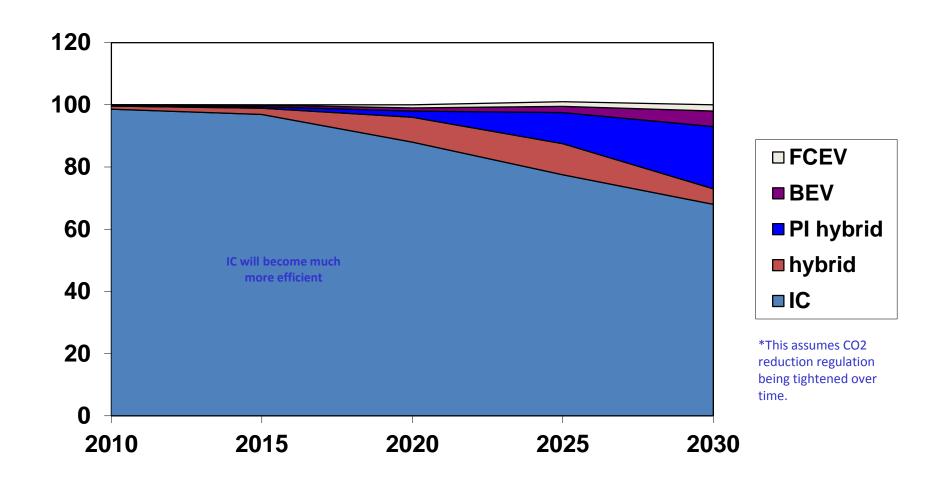
18. When using the car I am concerned that I will run out of electricity

22. I feel proud when using the el-car as it reflects my personal environmental values

N/A: 16,4 % N/A: 7,3 %

The barriers to EVs are not, on the whole, technological...

...they are social, economic, psychological...


Risk perceptions differ along the value chain

Key player	Main risks
Suppliers	Is the market going to be big enough for me to invest? Will they still need what I make?
Car makers	Why make high risk EVs if IC still sells well? If I go first will I gain an advantage?
Energy suppliers	How big is this market really going to be – is it worth me investing?
End users	Why pay more? Will it get me home? What about residual values? Will I have to pay for a new battery?
Dealers, garages	Can we make money on EVs? Can we do service and repair on them? Will my mechanics get a shock?
Government	Will this create jobs here or abroad?

Conclusions

- Most Europeans do not yet see EV as the logical solution.
- CO2 reduction is the primary regulatory driver in Europe; Europe's generating mix does not always deliver with EV.
- The Norwegian EV experiment deserves more attention; weaning EV users off subsidies is key challenge.
- PHEV will prove popular because of its ability to have your cake and eat it
 and reduce CO2.

Forecast powertrain mix: EU new vehicle registrations 2010-2030*

THE END

Thank you for your attention

