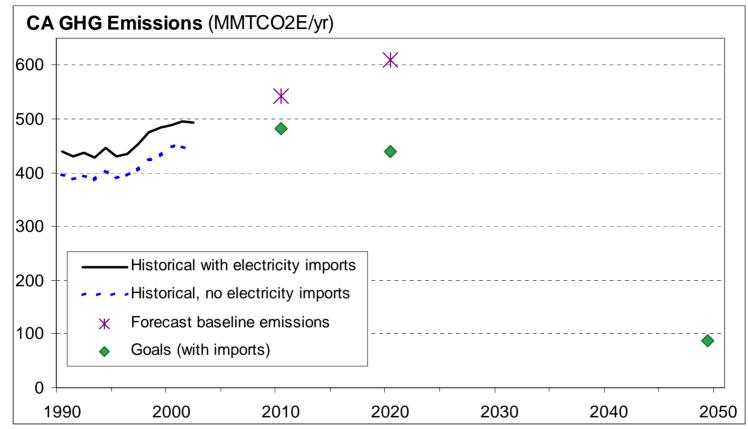
The Low Carbon Fuel Standard

Transportation and Climate Policy Asilomar Conference Center Pacific Grove, California


August 2007

Alex Farrell

Energy and Resources Group, UC Berkeley Director, Transportation Sustainability Research Center aef@berkeley.edu

California has the kind of ambitious targets needed globally to stabilize the climate

•Executive Order S-3-05 GHG emission reduction targets

-2010: maintain 2000 levels (~10% reduction from baseline)

–2020: return to 1990 levels (~25% reduction from baseline) \rightarrow AB32

-2050: attain 80% below 1990 levels

California's climate change strategy has three overarching goals

- Deploy near-term technologies to cut emissions by ~25% by 2020
- 2. Stimulate innovation & investment in new technologies needed to meet the 2050 stabilization target
- 3. Contribute to related objectives
 - Economic growth
 - Air quality
 - Affordable energy prices
 - Diversity of energy sources
 - etc.

California has developed a comprehensive, sectoral strategy to cut GHG emissions

Overall goals

- Executive Order S-3-05 (2005)
- Global Warming Solutions Act 2006 (AB 32)
- Energy Action Plan (CEC and CPUC)
- Bioenergy Action Plan (CARB, CEC, CPUC, etc.)

Energy research portfolio

Buildings and appliances

Energy efficiency standards (CEC)

Electricity other large sources

- Carbon Adder (CPUC)
- Renewable portfolio standard for electricity (SB 107)
- GHG performance standard (CPUC and SB1368)
- GHG emissions cap (CPUC)
- Energy efficiency targets for utility companies (AB 2021)

Transportation

- Vehicle GHG performance standard (AB 1493, CARB)
- Low Carbon Fuel Standard (Executive Order S-1-07, CARB, CEC, and others)*
- Reduce vehicle usage

Other policies

Achieving the 2050 stabilization target requires a sectoral policy

- Technological innovation is needed in every sector, which economy-wide prices are unable to achieve
 - Vehicles
 - Fuels
 - Travel modes

Multiple market imperfections

- Inadequate R&D for environmental technologies
- Network effects require cross-industry coordination
- Infrastructure is often required (especially for transit)
- High discount rates of private companies and of consumers
- Risk aversion of consumers
- Market power

Poor fuel-on-fuel competition in the transport sector adds to the need for a sectoral policy

Implications of a \$25/tonne CO₂ tax (or price)

 Nuclear + renewable electricity 	\$00.01/MWh
 Integrated gasification combined cycle with 	\$02.5/MWh
carbon capture and storage (IGCC+CCS)	
 Natural gas combined cycle (NGCC) 	\$12.5/MWh
 Pulverized coal (PC) 	\$20/MWh
– Gasoline	\$0.22/gallon

- Corn ethanol

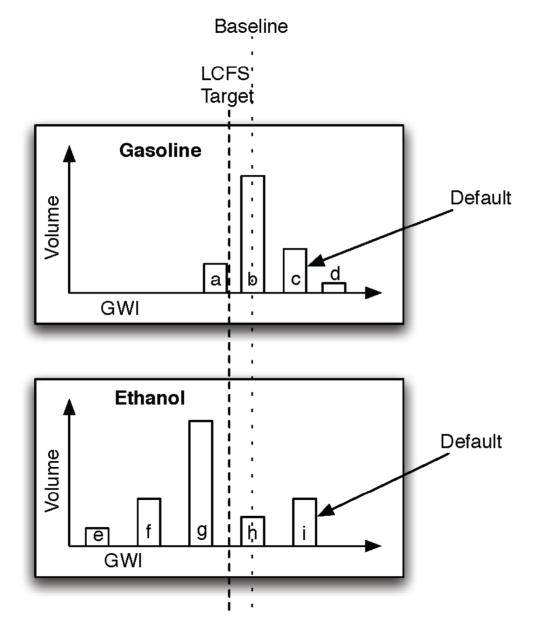
\$0.22/gallon \$0.11 to \$0.23/gallon

 A single, economy-wide price may induce tremendous technological change in the electric sector, but little in the transport sector (vehicles, fuels, travel choices)

Low Carbon Fuel Standard (LCFS)

Carbon intensity must be measured on a lifecycle basis

- Global warming intensity
- Average Fuel Carbon Intensity (AFCI) in gCO2e/MJ
- Adjusted for inherent drivetrain efficiency: Gasoline = 1.0 by definition, Diesel = 0.78, Electricity = 0.20, $H_2 = 0.47$
- AFCI must decline by at least 10% by 2010
- Compliance by manufacturers or importers of fuels
- Performance standard (no 'picking winners')
- Additional to vehicle performance standards
- Overcompliance creates credits can be traded or banked
- Similar to emerging European biofuel approach
- Could be implemented in addition to tax or cap

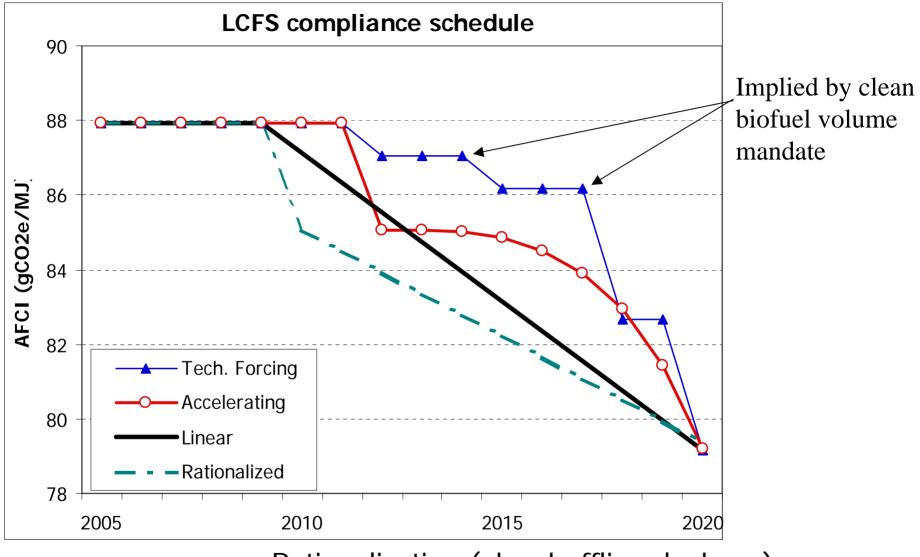

Regulatory Approach

- Firms report average carbon intensity of fuels
 - Carbon intensity of inputs are recorded
 - Compared to standard that declines over time

Default: all fuel inputs are assigned a carbon intensity

- Fuel inputs must be categorized
- Highest value in common use is the default value
- Encourages opt-in and focuses management attention
- Opt-in: suppliers with lower carbon intensity can get certified at a lower value
 - Requires protocol development and data collection
- Compliance options
 - Improve energy efficiency or lower upstream CO₂ emissions
 - Blend in fuels with lower carbon intensity
 - Sell fuels with low carbon intensity (e.g. electricity)
 - Buy credits <u>from within the fuels sector</u>

Illustration of default and opt-in apporach



9

Illustrative defaults (a limited set)

- Fuel default
 - Gasoline, diesel, ethanol, biodiesel, natural gas, electricity
- Feedstock default
 - Gasoline: conventional oil, heavy oil, tar sands, coal
 - Diesel: conventional oil, heavy oil, tar sands, coal
 - Ethanol: U.S. corn, Brazilian sugar, U.S. switchgrass
 - Electricity: (?) CA average, CA marginal,
- Feedstock & processing default
 - Gasoline: conventional oil, convetional oil with CCS, heavy oil, heavy oil with cogeneration, tar sands with nuclear process heat, etc. (Regions or specific crudes are possible)
 - Ethanol: U.S. corn pre-2000 wet mill, U.S. 2004 natural gas dry mill, Brazilian sugar, U.S. switchgrass, etc.
 - Electricity: ???

Possible compliance schedules

- Rationalization (aka shuffling, leakage)
- Technological innovation

Key issues and questions

• Basis of competition

Electricity

Rate-of-return regulation All emissions capped (?) Local

"Ratepayer subsidies"

- Including "upstream" emissions
- Improved LCA methods
 - Better data
 - Transparency
 - Better methods
 - Land use change
- Compliance schedule
- Complementary regulations and government actions
- Availability of offsets, interactions with AB32 allowances¹²

Oil

Competitive Intensity target Global "Capital at risk"

LCFS developments worldwide

Renewable Fuel Standard (RFS)

- US: 7.5 billion gallons (gge) biofuel 2012 to ~6% of gasoline (EPACT).
- US: 24 billion gallons (gge) biofuels by 2025 (Exec. Order)
- UK: Renewable Transportation Fuel Obligation (RTFO): 5% by 2010
- Low Carbon Fuel Standard (LCFS)
 - California: regulations to be in effect 2010 (AB32 and Exec. Order)
 - Federal regulations: Proposed Rule November 2007 (Exec. Order)
 - Federal bills: Boxer, Feinstein, Obama, Inslee, Dingle-Boucher, etc.
 - European Union: monitoring in 2009, reductions start in 2011
 - United Kingdom: RTFO requires GHG monitoring, pilot in 2007
 - Germany: Sustainability requirements for biofuels
 - Others: BC, WA, OR, AZ, NM, MN, and...?

Thank You

- S.M. Arons, A.R. Brandt, M.A. Delucchi, A. Eggert, B.K. Haya, J. Hughes, B.M. Jenkins, A.D. Jones, D.M. Kammen, S.R. Kaffka, C.R. Knittel, D.M. Lemoine, E.W. Martin, M.W. Melaina, J.M. Ogden, R.J. Plevin, D. Sperling, B.T. Turner, R.B. Williams, C. Yang
- Stakeholders
- CARB and CEC staff
- This research was supported by a grant from the Energy Foundation.