Light-Duty Vehicle Technology: Fuel Consumption and GHG Emissions

Μ

John Heywood,

Director, Sloan Automotive Laboratory, MIT

(Contributors: Anup Bandivadekar, Lynette Cheah, Christopher Evans, Emmanuel Kasseris, Matt Kromer, and Malcolm Weiss)

11th Biennial Asilomar Conference on Transportation and Climate Policy, August 21-24, 2007

Objectives

- 1. Review the potential for reducing fuel consumption and GHG emissions through propulsion system and vehicle technology changes.
- 2. Illustrate potential impact of these changes on U.S. light-duty fleet fuel consumption and GHG out to 2035.
- Explore feasibility of halving fuel consumption of 2035 new vehicle sales mix.

Technologies That Could Contribute by 2035

- 1. Significantly contribute:
 - Improved gasoline spark-ignition engines
 - Turbocharged gasoline spark-ignition engines
 - Gasoline engine electric hybrids (HEV)
 - More efficient transmissions
 - Reduced vehicle weight
 - Reduced vehicle drag and tire resistance
- 2. Marginally contribute:
 - Fuel cell (hybrids) and hydrogen
 - Plug-in hybrids (PHEV) and electricity

Our MIT Group's Analysis Methodologies

- 1. Propulsion system and vehicle technology performance analyses (ADVISOR)
- 2. Light-duty vehicle in-use U.S. fleet model
- 3. Estimates of growth in fleet size and vehicle km/yr
- 4. New vehicle fuel consumption and market share assumptions
- Construct and assess scenarios that would reduce fuel consumption and GHG emissions of the U.S. LD vehicles out to 2035

Relative Petroleum, Energy, and GHG Emissions

Fuel Consumption/Performance/Size Trade-Off

- 1. A critical question is the extent to which the benefits of improved efficiency technology go to reduce actual fuel consumption.
- 2. Quantify this with a *degree of emphasis on reducing fuel consumption* (ERFC).

ERFC =

Fuel consumption (FC) reduction realized

FC reduction attainable with constant performance and size

Trade-off between acceleration time and fuel consumption in the 2030 new car

Emphasis on reducing fuel consumption (ERFC)

No Clear Winner – Market Mix

U.S. LDV Fleet Fuel Use – Market Mix

U.S. LDV Fleet GHG Emissions – Market Mix

Halving the Fuel Consumption of the 2035 New Light-Duty Vehicles

Vehicle design and marketing options

Scenarios Evaluated

- #1. Strong emphasis on reducing fuel consumption and vehicle weight
- #2. Strong emphasis on reducing fuel consumption and alternative powertrains
- #3. Strong emphasis on alternative powertrains and vehicle weight
- #4. Most feasible combination of ERFC, alternative powertrains, and vehicle weight.

Scenarios That Halve Fuel Consumption in 2035

	Emphasis on reducing FC, % (avg. car 0-60 acc. time, s)	% weight reduction (avg. car curb weight, kg)	Market share by powertrain, %			
Scenarios			NA gasoline	Turbo gasoline	Diesel	Hybrid gasoline
2006	-	0% (1,620 kg)	95%	1%	2%	2%
I. Strong emphasis on FC + max. weight reduction	100% (9.5s)	35% (1,050 kg)	72%	8%	8%	12%
II. Strong emphasis on FC + more alternative powertrains	96% (9.2s)	19% (1,310 kg)	15%	25%	25%	35%
III. More alternative powertrains + max. weight reduction	55% (7.4s)	35% (1,050 kg)	15%	25%	25%	35%
IV. Plausible scenario with aggressive hybrid penetration	75% (8.2s)	20% (1, 300 kg)	17%	15%	15%	54%

2035: Total Extra Cost Comparison

Scenario	Cost of halving fuel consumption (billions, \$US)	% of Baseline cost (%)	Undiscounted pay back period (years)	Cost of GHG reduction (\$US / ton CO2e)
I	\$55	13%	3	\$60
II	\$57	14%	4	\$65
III	\$80	20%	6	\$90
IV	\$65	16%	5	\$70

Critical Issues

- 1. Especially critical is decreasing our emphasis on performance and size.
- 2. Cost of major GHG reductions is substantial: new vehicle cost increases by some 15%
- 3. However, total fuel savings more than offset this vehicle cost increase
- 4. Requires aggressive and large scale changes in vehicle technology <u>and</u> consumer behavior
- 5. Factor of two by 2035? Maybe, but unlikely!