Asilomar Conference 14th Biennial Conference on Transportation Energy and Policy, 6-9 August 2013

What Do Energy and GHG Scenarios Tell Us?

Lew Fulton, UC Davis

Outline of talk:

- Global energy/CO projections overview
- Transport in global projections
- Fuel use and implications
- Oil supply and demand
- Costs and policies

Reports covered in this presentation:

	Study	Projection year	Geographic coverage
	IEA, Energy Technology Perspectives 2012	2050	World
	IEA World Energy Outlook 2012	2035	World
	Global Energy Assessment (IIASA et al) 2012	2100	World
	Shell New Lens Scenarios (2013)	2050	World
	BP World Energy Outlook (2013)	2030	World
	NRC 2013: Transitions to Alternative Vehicles and Fuels	2050	United States
	UC Davisvarious work		
INSTITUTE OF TRANSPORTATION STUDIES			

IEA Energy Technology Perspectives (ETP) 2012

Three different CO2 trajectories to 2100

Long-term energy-related CO₂ emissions derived from ETP scenarios Figure 16.1 and compared with RCPs. 6DS 60 50 4DS GtCO₂/year 40 30 2DS 20 10 RCP3PD 0 -10 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Source: Unless otherwise noted, all tables and figures in this chapter derive from IEA data and analysis.

Energy-related CO₂ emissions need to be completely eliminated by 2075 in order to limit global temperature rise to 2°C.

Key point

IEA ETP 2012 - 3 different CO2 trajectories

Transport and industry have the most emissions in 2050 2DS, but transport is significantly lower than today

Note: CO₂ emissions in this graph are accounted for in the sector, where the CO₂ is physically emitted.

Key point

Decarbonising electricity is critical, but all sectors must contribute to emissions reduction.

Combinations of shifts in travel and uptake of new vehicles/fuels can get us to 2DS

Energy demand in the transport sector by mode

Key point

Figure 13.20

The 2DS reflects both travel Avoid/Shift changes and vehicle Improve changes, which combine for maximum fuel savings.

IEA ETP 2012 - travel trends

LDV travel has flat-lined around OECD, but at a high level per capita, and will it last?

Key point Key point: Vehicle travel began to flatten or even decline after 2000, suggesting "peak" travel may be occurring in the OECD.

IEA WEO 2012: heading toward 2 billion cars

OECD is fairly saturated, but rest of the world is not.:

Figure 3.6 PLDV fleet in selected regions in the New Policies Scenario

Global Energy Assessment 2012

Passenger travel could quadruple over the century

Figure 9.39 | Growth of passenger transport activity.

GEA, 2012: *Global Energy Assessment - Toward a Sustainable Future*, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria.

GEA: CO2 reduction scenarios for LDVs

Many ways to get there...

GEA, 2012: *Global Energy Assessment - Toward a Sustainable Future*, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria.

Shell Scenarios 2013 Scenario Contrast: World passenger transport

- Electricity and Hydrogen
- Gaseous Hydrocarbon Fuels
- Liquid Hydrocarbon Fuels & Biofuels

Combined with the impact of higher economic development, *Oceans* sprawling suburbs lead to higher travel needs than *Mountains* compact cities

NextSTEPS Nordic Rapid Transition Scenario: LDV sales reaches 100% plug-in-capable by 2040

In RTS, plug-in electric vehicle sales shares grow rapidly after 2020; fuel cell vehicle shares after 2025; only plug-in and FCVs are sold after 2040.

IEA ETP-2012 Extensions (Fulton et al, draft paper)

Lots of electricity and hydrogen by 2050 in some modes, but still a huge liquid fuels need

ETP-2012 extensions (Fulton et al draft paper)

Summary picture: 27 EJ of biofuels in 2050, 40 in 2075

NEW!!! iTEM Project - VERY preliminary results

UC Davis, ICCT, PNNL, IIASA, IEA are comparing transport models and projections. Goals include comparison of historical data, basic drivers for projections, and transport activity/energy/CO2 projections under consistent assumptions. Some very early results here:

Low CO2 Scenarios result in lower Oil Price

* Average IEA crude oil import price.

Tight oil will drive global supply growth...

The global liquids balance reflects the shifts...

bp

Lowering CO2 means lowering Oil Price

IEA WEO 2012:

Figure 2.14 Spending on net imports of fossil fuels in the New Policies

IEA WEO 2012:

Figure 2.16 ▷ Net oil and gas import dependency in selected countries in the New Policies Scenario

Note: Import dependency is calculated as net imports divided by primary demand for each fuel.

INSTITUTE OF TRANSPORTATION STUDIES

IEA WEO 2012:

Figure 2.17 ▷ Reductions in net oil imports in the United States by source in the New Policies Scenario

- 2011 net oil import level
 Projected net imports
 Reductions due to:
 Demand-side efficiency
 - Biofuels use in transport
 - Natural gas use in transport
 - Increased oil supply

IEA ETP 2012 - Humans spend a lot on transport...

And sustainabilty could cost us less...

Total cost for vehicles, fuels and infrastructure 2010-2050 is now \$500 Trillion...lower in 2DS because you need fewer vehicles and roads, and less fuel

Key point

The Improve case greatly reduces the expenditures on fuels, whereas the Avoid/Shift case cuts down infrastructure and vehicle costs.

NRC 2013: Transitions to Alternative Fuels and Vehicles report

By 2040 technology costs converge...

NRC 2013 Figure 2.8 Car incremental cost versus 2010 baseline – midrange case

Transition costs in the US (Ogden/Fulton)

- Assumes a very ambitious introduction of PHEV, BEV and FCEV LDVs in the United States (40M by 2030) along with large-scale introduction of advanced biofuels
- Using NRC-2013 cost projections, we estimate \$100-300B to pay for all fuel infrastructure and vehicle buy-down costs through 2030
- Most or all returned in fuel cost savings
- The buy-down cost rises then falls, but averages around \$10-20B/year
- In the US we pay close to \$1 trillion per year for new cars plus fuel for all cars
- Can we afford 1-2% diverted for a transition to a low carbon fuel system?
 UCDAVIS
 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Final Thought – Policy Elements?

- It seems we at least need:
 - To plan our cities/regions carefully and invest in alternative modes of transport
 - To have governments pay much of the buy-down costs for new technology vehicles and fuel infrastructure
 - Strong, long-term vehicle efficiency standards
 - Strong price signals combination of fuel/carbon prices, vehicle prices (e.g. feebates), road/parking prices. This can also raise much needed revenue for investments
- Is this enough?
- *How can we achieve "policy sustainability"?*