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Global Energy Assessment (IIASA, 2012): 
Sustainable energy requires the following:  

 “Without question a radical transformation of the 
present energy system will be required over the coming 
decades.”  (p. xiii) 

 “An effective transformation requires immediate action.” 
(p. xv) 

 “In all (sustainable, ed.) pathways conventional oil is 
essentially phased out shortly after 2050.” (p. 51) 
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Shale gas & oil: an unexpected revolution in global energy 
resources or technology and markets as usual? 
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The IEA estimates that an order of magnitude more liquid fossil fuel can be 
produced at prices the world has already proven it is willing to pay.  
But, that’s the carbon we need to keep out of the atmosphere. 

Source: International Energy Agency, World Energy Outlook 2008, OECD, Paris. 4 



If energy transitions were easy… To avoid the “Planning 
Fallacy” consider empirical evidence from similar situations. 

Energy Information Administration, Annual Energy Review 2011, table 2.1e. 
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We need to listen to McNutt and Rodgers. 
“Lessons learned from 15 years of alternative fuels experience – 1988 to 2003”, McNutt and 
Rodgers in Sperling and Cannon, eds., The Hydrogen Transition, 2004 (Asilomar 2003). 

 “…new technologies have to be better…and must keep ahead of 
conventional technology improvements that will inevitably occur.” 

 “Unregulated and unsubsidized private sector investment in 
refueling infrastructure has proven to be very limited.” 

 Building infrastructure in anticipation of market development has 
rarely happened, and when it has, the investors have usually been 
disappointed, especially with high cost refueling stations….” 

 “Social attributes of the new alternative fuels are not valued by 
mainstream consumers.” 

 “Given consumer reticence, the political system has not yet shown 
a willingness to impose significant visible costs on private 
players….” 

6 



Why is a large-scale energy transition for the 
public good a different kind of problem? 
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 It takes decades. The difference between social and private discount rates 
becomes critical. 

 Technological progress is inherently uncertain, as are economic 
conditions. 

 Externalities are involved but not all the social costs are externalities 
(e.g., monopoly power in world oil market). 

 There are other important market shortcomings (e.g., energy paradox). 
 The transition creates external benefits (network & other) which are 

difficult for private agents to capture. 
 Value of fuel availability to car buyers 
 Learning-by-doing spillovers 
 Scale economies (pecuniary) 
 Reduction of risk-aversion of majority 
 Value of choice diversity (versus scale economies) 

 “Deep Uncertainty” 



“Not 1970’s environmental economics.”  Markets may see 
no net present value to the transition, even if externalities 
are internalized. 
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Assume we want to maximize the net present value 
(NPV) of the transition wrt policy actions.  The NPV in 
every year is dependent on previous years. 
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In year t, there is a social willingness to pay for having more vehicles and infrastructure 
in operation (dNPV/dN) and a market willingness to accept vehicle and provide 
infrastructure (dN/dP).  There is an equilibrium providing “surplus” to both and resulting 
in sales of Nt vehicles at a subsidy of Pt. (Oversimplification due to tipping points, and 
uncertainty.) 

$ 

Number of Vehicles, Year t 

Required subsidy per vehicle 
(willingness to accept) 

Marginal Net Present Social Value 
(willingness to pay) 

Societal 
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Consumers’ Surplus 

0 Nt 

Pt 

Is there such a thing as an economically efficient transition? 
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The Light-duty Alternative Vehicle Energy Transition Model used 
in the NRC study Transitions to Alternative Vehicles and Fuels 
and ICCT study of Transitions to Electric Drive in California. 
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Keep it simple: Choice Model Structure 

Buy New Car Don’t Buy 

Passenger Car Light Truck 

ICE Nest BEV FCV 

ICE HEV PHEV 

ICE Nest BEV FCV 

ICE HEV PHEV 
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For each technology type, utility is measured as a function of vehicle 
attributes, fuel costs, fuel availability, risk aversion (majority), and 
diversity of choice (# of makes and models). 
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Ui = average utility of vehicle technology type i 
Xij = jth attribute of vehicle technology type i 
Pi = RPE of vehicle technology type i 
αj = average utils per unit of Xij 
β = average utils per dollar (of purchase price) 
αj/β = average $/unit of attribute j (dollar value) 
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By reducing power requirements, the standards 
help make e-drive vehicles cheaper than ICEs. 
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Several important policies are assumed: 

• Increasingly strict fuel economy/emissions standards. 
• Policies to insure low carbon fuels. 
• Existing vehicle subsidies end after 2015, but… 
• Fuel economy/emissions standards induce vehicle pricing 

that reflects the social costs of oil and GHGs (like feebates). 
• Highway user fee on energy indexed to average energy 

efficiency of all vehicles in use. 
• A scenario consists of additional vehicle and 

infrastructure subsidies or mandates after 2015. 
• Please remember, the following analysis is not 

definitive, but it is based on the NRC study 
premises. 
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A strategy promoting both FCVs and PEVs led to an 
88% reduction in GHG emissions and a 100% 
reduction in petroleum use by 2050. 
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Feedback effects can be surprisingly large. 
Effects of a $100 subsidy for fuel cell vehicles in California and 
the Section 177 (ZEV) states. Rest-of-U.S. policy lags 5 years. 
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If the NRC technology scenario is realized, 
small initial costs yield large future gains. 
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This graph from the NRC (2013) Transitions to Alternative 
Vehicles and Fuels study suggests that NPV benefits are 
roughly an order of magnitude greater than excess costs. 
Note: Energy Savings > Excess Cost. 
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Sensitivity analysis illustrates tipping points & 
uncertainty (policies constant, market uncertain). 
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Tipping points appear more extreme for FCVs due to 
network externalities (chicken or egg) and their larger 
potential market share. 
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How large is the valley?  How certain the reward? 
(adjusting policies to achieve fixed market shares while 
including uncertainty in technological progress). 
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The modeling results suggest some 
potentially important inferences. 
 Net benefits of transition appear to exceed excess costs by 

approximately an order of magnitude, but 
 NPV < 0 for about a decade. 

 Subsidies may be needed for an extended period (to 2025 or 2030). 

 Temporarily, must do more than “internalize the external costs”. 

 There are important “tipping points”. 

 “Network external benefits” create large positive feedbacks. 

 Mandates (ZEV) and/or subsidies seem to be essential. 

 Early hydrogen infrastructure is critical for FCEVs. 

 FCEV market potential appears to be > BEV > PHEV. 

 What happens elsewhere strongly affects CA & US. 
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What do we need to know that we don’t? 

1. Innovators/majority: How many? $How much? How long? 
2. How important is fuel availability? 
3. How important is limited range/long recharging time? 
4. How valuable are workplace & public recharging? 
5. How valuable is diversity of choice? 
6. How important is coordination with the rest of the world? 
7. How sensitive are consumers’ to vehicle and fuel prices? 
8. What are viable financing policies & business models for early 

recharging and refueling infrastructure? 
9. Which policies are most cost-effective and acceptable? 
10. The value of research: save money, sustain public support. 

 
How can we mitigate the “planning fallacy”? Reread McNutt and 

Rodgers, Asilomar 2003). 
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THANK YOU. 
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Baker Center Report: Analyzing the Transition to Electric Drive in California 
http://bakercenter.utk.edu/wp-content/uploads/2013/06/Transition-to-Electric-Drive-2013-report.FINAL_.pdf 

NRC Report: Transitions to Alternative Vehicles and Fuels 
http://www.nap.edu/catalog.php?record_id=18264 

“Transition from Petro-Mobility to Electro-Mobility”, in Stolten and Scherer, eds.,  
Transition to Renewable Energy Systems, Wiley-VCH, Weinheim, Germany. 

Analyzing the Transition to Electric Drive Vehicles in the U.S., D.L. Greene, C. Liu and S. Park, 
forthcoming, Futures. 



The LAVE model is highly generalized. 

 2 regions rather than geographically detailed. 
 2 market segments: innovators/early adopters v. majority. 
 2 types of vehicles: passenger cars and light trucks. 
 Knowledge of market response is limited. 
 Innovators, early adopters, majority 
 Cost of limited fuel availability 
 Cost of short range/long recharge 
 Scale economies, learning-by-doing, risk aversion… 

 The model provides a structured framework for integrating 
knowledge and assumptions rather than an accurate prediction of 
the future. 
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Like the NRC study, we took energy prices from the 2011 
Annual Energy Outlook, and changed the motor fuel tax to 
an Indexed Highway User Fee on Energy. 
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One tipping point is hydrogen infrastructure. 
If the rest of US installs early H2 infrastructure FCVs thrive. 
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A key premise of the NRC study was that fuel economy & GHG 
emissions standards would be tightened through 2050. 
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How are these fuel economies achieved? 
Reduced load + improved drivetrain efficiency. 
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The retail price projections for light trucks are 
similar but ICEs remain the least expensive. 
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The NRC study assumed the cost of producing 
“drop-in” bio-fuel via pyrolysis and refining would 
decrease over time to $3-$4 per gallon. 
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Quantification of the transition costs (market barriers) allows one to 
see how network external benefits enable the transition.    
(Note: “Price” includes any subsidies) 
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For BEVs, availability of recharging is much less of a hindrance but 
range/recharge time remains a significant cost.  Early adoption 
reduces majority’s risk aversion and builds scale economies. 
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The implied subsidies are large but are no 
longer needed after 2030. 
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According to the parameter assumptions, innovators and 
early adopters drive the market for at least a decade. 
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All fuels reduce their WTW emissions. Gasoline 
becomes increasingly derived from biomass. 
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This graph shows high-volume, fully-learned 
incremental manufacturing costs. 
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NRC assumed battery costs would decrease 
in line with EPA/NHTSA/ARB assessment. 

• EV range was assumed constant at 100 miles. 
 
 
 
 
 

• Technological advances were taken as cost reductions. 
• However, limited range and long charging times remain 

barriers to consumer acceptance. 
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Technology Units 2010 2030  
(Mid/Opt)

2050  
(Mid/Opt)

BEV battery $/kWh $450 $250/$200 $160/$150

PHEV battery $/kWh $550 $320/$260 $200/$190

HEV battery $/kWh $2,000 $750/$650 $650/$650

FC system $/kW $50 $33/$27 $27/$22



A significant amount of drop-in bio-fuel 
is in every scenario. 
• Drop-in Biofuels (direct replacement for gasoline) can be 

produced from cellulosic biomass and introduced without 
major changes in delivery infrastructure or vehicles 

• Achievable production levels at acceptable cost are uncertain, 
but the potential is large. 
• Maximum 2050 production:  

• 45 BGGE/700 Mt biomass/58M acres 
• Reference Assumption: 

• 13.5 BGGE/210Mt biomass/17M acres 

• Drop-in Biofuels coupled with high efficiency ICEVs and 
HEVs could be a major contributor to reducing petroleum 
use and GHG emissions. 
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The historical progress of batteries and fuel cells is relatively clear.  
Future progress could be much slower and goals would still be met. 
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The cost of limited fuel availability is represented by the 
capitalized cost of increased time to travel to scarce stations. 
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Costs of limited range/long refueling time, values of public 
recharging are capitalized in the price of vehicles. 

y = 15184e-0.01x

R² = 0.9989

y = 30368e-0.01x

R² = 0.9989
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The majority resists, innovators/early adopters will 
pay more for advanced technologies. 
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Other key parameters. 
 Payback period for fuel savings: 3 years 
 Price elasticities of vehicle choice: 
 Buy/No-buy:  -1.0 
 ICE/HEV/PHEV:  -4.8 

 Economies of scale 
 Scale elasticity: -0.2 
 Full scale: 200,000 units 

 Progress ratios: 0.95 
 And more… 
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Most of the key parameters are not well 
understood.  So do a sensitivity analysis. 
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Parameters   Distribution  Min Mean Max 

 Importance of diversity of makes and models to chose from  Triangle 0.50 0.67 0.9975932 

 Value of time  ($/hr.)  Triangle $10.00 $20.00 $39.86 

 Maximum value of public recharging to typical PHEV buyer   Uniform $500 $1,000 $1,500 

 Cost of one day on which driving exceeds BEV range  Uniform $10,002 $20,000 $29,999 

 Maximum value of public recharging to typical BEV buyer  Uniform $0 $500 $1,000 

 Importance of fuel availability relative to standard assumption  Triangle 0.67 1.00 1.67 

 Payback period for fuel costs  (yrs.)  Triangle 2.0 3.0 5.0 

 Volume threshold for introduction of new models rel. to std. 
assumptions  

Uniform 0.80 1.00 1.20 

 Optimal production scale relative to standard assumptions  Uniform 0.75 1.00 1.25 

 Scale elasticity relative to standard assumptions  Uniform 0.50 1.00 1.50 

 Progress Ratio relative to standard assumptions  Uniform 0.96 1.00 1.04 

 Price elasticities of vehicle choice relative to standard assumptions  Uniform 0.60 1.20 1.80 

 Percentage of new car buyers who are innovators  Triangle 5.0% 15.0% 20.0% 

 Willingness of innovators to pay for novel technology ($/mo.)  Uniform $100 $200 $300 

 Cumulative production at which innovators WTP is reduced by 1/2  Uniform 1,000,000 2,000,000 3,000,000 

 Majority's aversion to risk of new technology ($/mo.)  Uniform -$900 -$600 -$300 

 Cumulative production at which majority's risk is reduced by 1/2  Uniform $500,000 $1,000,000 $1,500,000 



Transitioning to electric drive vehicles 
presents a new challenge for public policy. 

 The petroleum/internal-combustion-engine system has been 
refined over 100 years of use. 

 The benefits sought are public goods: 
 Reduce GHG and other pollutant emissions 
 Reduce dependence on petroleum 

 The transition will require 2-3 decades and the “valley of 
death” will last about 10 years. 

 Today, the alternative technologies are not competitive 
without subsidies.  Will they ever be? 

 Internalizing external costs likely not enough; may need to 
internalize network external benefits too, and more. 
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The analysis for CA and 177 states links 2 
LAVE models together.   

CA + 177 States Rest of U.S.A. 

1-year lag 
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Benefits exceed costs by about an order of 
magnitude (technological success assumed). 

(Co-benefits, co-benefits…) 
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With comparable US policies lagging by 5 years 
there is an earlier, more complete transition. 
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Society’s determination was reflected in assumed 
marginal social values for oil and GHG reduction. 
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