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Global Energy Assessment (lIASA, 2012):
Sustainable energy requires the following:

“Without question a radical transformation of the
present energy system will be required over the coming
decades.” (p. xiii)

“An effective transformation requires immediate action.”
(p. XV)

“In all (sustainable, ed.) pathways conventional oil is
essentially phased out shortly after 2050.” (p. 51)




Shale gas & oil: an unexpected revolution in global energy
resources or technology and markets as usual?

The Resource Pyramid

Jion Tight

Oil;
Pty Gas Sands;
Heavy Oil; CBM:

Bituminous Gas Shales
Sands

Increasing Product Price

'—
—

Improving Technology

Oil Shale Gas Hydrates

Province Resource Size




e

The IEA estimates that an order of magnitude more liquid fossil fu

But, that’s the carbon we need to keep out of the atmosphere.

Figure 9.10 @ Long-term oil-supply cost curve
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If energy transitions were easy... To avoid the “Planning
Fallacy” consider empirical evidence from similar situations.

U.S. Transportation Energy Use: 1950-2011
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Energy Information Administration, Annual Energy Review 2011, table 2.1e.




We need to listen to McNutt and Rodgers.

“Lessons learned from 15 years of alternative fuels experience - 1988 to 2003”, McNutt and
Rodgers in Sperling and Cannon, eds., The Hydrogen Transition, 2004 (Asilomar 2003).
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‘. ..new technologies have to be better...and must keep ahead of

conventional technology improvements that will inevitably occur.”

“Unregulated and unsubsidized private sector investment in

refueling infrastructure has proven to be very limited.”

Building infrastructure in anticipation of market development has
rarely happened, and when it has, the investors have usually been

disappointed, especially with high cost refueling stations....”

“Social attributes of the new alternative fuels are not valued by

mainstream consumers.”

“Given consumer reticence, the political system has not yet shown
a willingness to impose significant visible costs on private

players. L




Why is a large-scale energy transition for the
public good a different kind of problem?

® It takes decades. The difference between social and private discount rates
becomes critical.

® Technological progress is inherently uncertain, as are economic
conditions.

e Externalities are involved but not all the social costs are externalities
(e.g., monopoly power in world oil market).

® There are other important market shortcomings (e.g., energy paradox).
® The transition creates external benefits (network & other) which are
difficult for private agents to capture.
Value of fuel availability to car buyers
Learning-by-doing spillovers
Scale economies (pecuniary)
Reduction of risk-aversion of majority

Value of choice diversity (versus scale economies)

° “Deep anertainty”




“Not 1970’s environmental economics.” Markets may see
no net present value to the transition, even if externalities
are internalized.

But we are actually
HERE and the
alternative is THERE

WORSE (higher cost)

Markets think they are
BETTER (lower cost) HERE and the alternative is THERE

™~
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Assume we want to maximize the net present value
(NPV) of the transition wrt policy actions. The NPV in
every year is dependent on previous years.

T

1

NPV = Zm [BPt (Xtibt) + BUt (Xt; bt) - CFT(Xt;bt) _ CVt (XtJbt)]
t=0

Where X; is a matrix and by is a vector of parameters:




Is there such a thing as an economically efficient transition?

In year t, there is a social willingness to pay for having more vehicles and infrastructure
in operation (ANPV/dN) and a market willingness to accept vehicle and provide
infrastructure (dN/dP). There is an equilibrium providing “surplus” to both and resulting
in sales of N, vehicles at a subsidy of P,. (Oversimplification due to tipping points, and
uncertainty.)
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4 The Light-duty Alternative Vehicle Energy Transition Model used N
in the NRC study Transitions to Alternative Vehicles and Fuels
and ICCT study of Transitions to Electric Drive in California.
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Keep it simple: Choice Model Structure

Buy New Car

Passenger Car Light Truck

ICENest BEV  FCV ICENest BEV  FCV

ICE HEV PHEV ICE HEV PHEV

Don’t Buy




For each technology type, utility is measured as a function of vehicle

attributes, fuel costs, fuel availability, risk aversion (majority), and
diversity of choice (# of makes and models).

U, ZaX + 3P, = ,BZ Six, +P

J=1

U, = average utility of vehicle technology type i
X;; = Jth attribute of vehicle technology type i

P, = RPE of vehicle technology type i

o; = average utils per unit of X;;

[ = average utils per dollar (of purchase price)
o;/ = average $/unit of attribute j (dollar value)




The NRC scenarios assume major efficiency gains.

New Light-duty Vehicle Fuel Economy: Mid-range
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By reducing power requirements, the standards

help make e-drive vehicles cheaper than ICEs.

2009 Dollars

$50,000

Retail Price Equivalents: Passenger Cars
High Volume, Fully Learned

$45,000 -
$40,000

$35,000 | —

$30,000 L;

I
$25,000 ——BEV
$20,000 PHEV
$15,000 —FCV
$10,000 e H E\/
$5,000 e |CE
S0 T T
2010 2020 2030 2040 2050

™




e

Several important policies are assumed:

o Increasingly strict fuel economy/ emissions standards.
* Policies to insure low carbon fuels.

* Existing vehicle subsidies end after 2015, but...

* Fuel economy/emissions standards induce vehicle pricing
that reflects the social costs of oil and GHGs (like feebates).

g Highway user fee on energy indexed to average energy

efficiency of all vehicles in use.

» A scenario consists of additional vehicle and
infrastructure subsidies or mandates after 2015.

° Please remember, the following analysis is not
definitive, but it is based on the NRC study
premises.




A strategy promoting both FCVs and PEVs led to an
88% reduction in GHG emissions and a 100%
reduction in petroleum use by 2050.
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" Feedback effects can be surprisingly large.

Effects of a $100 subsidy for fuel cell vehicles in California and
the Section 177 (ZEV) states. Rest-of-U.S. policy lags 5 years.

Change in Perceived Cost per Car

Impacts of a $100 Greater Subsidy per FCVin 2020
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If the NRC technology scenario is realized,

small initial costs yield large future gains.

Impacts of a $100 Greater Subsidy per FCV in 2020 on Sales of
FCVs and the Present Value of the Transition
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4 This graph from the NRC (2013) 7ransitions to Alternative
Vehicles and Fuels study suggests that NPV benefits are
roughly an order of magnitude greater than excess costs.
Note: Energy Savings > Excess Cost.
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Sensitivity analysis illustrates tipping points &
uncertainty (policies constant, market uncertain).

Relative Frequency Distribution of Market Shares of Battery Electric Vehicles in 2050
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Tipping points appear more extreme for FCVs due to
network externalities (chicken or egg) and their larger
potential market share.

Relative Frequency Distribution of Market Shares of Fuel Cell Vehicles in 2050
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4 How large is the valley? How certain the reward?
(adjusting policies to achieve fixed market shares while
including uncertainty in technological progress).

\

Discounted Annual Net Present Value (Millions of 2008 $)
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The modeling results suggest some
potentially important inferences.

® Net benefits of transition appear to exceed excess costs by

approximately an order of magnitude, but
NPV < 0 for about a decade.
Subsidies may be needed for an extended period (to 2025 or 2030).

Temporarily, must do more than “internalize the external costs”.
® There are important “tipping points”.
* “Network external benefits” create large positive feedbacks.
® Mandates (ZEV) and/ or subsidies seem to be essential.
* Early hydrogen infrastructure is critical for FCEVs.
* FCEV market potential appears to be > BEV > PHEV.
* What happens elsewhere strongly affects CA & US.
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What do we need to know that we don’t?

co ~J O U1 S~ W N =

10.

Innovators/majority: How many? $How much? How long?
How important is fuel availability?

How important is limited range/long recharging time?
How valuable are workplace & public recharging?

How valuable is diversity of choice?

How important is coordination with the rest of the world?
How sensitive are consumers’ to vehicle and fuel prices?

What are viable financing policies & business models for early
recharging and refueling infrastructure?

Which policies are most cost-effective and acceptable?

The value of research: save money, sustain public support.

How can we mitigate the “planning fallacy”? Reread McNutt and

Rodgers, Asilomar 2003).




THANK YOU.

Baker Center Report: Analyzing the Transition to Electric Drive in California
http://bakercenter.utk.edu/wp-content/uploads/2013/06/Transition-to-Electric-Drive-2013-report. FINAL _.pdf

NRC Report: Transitions to Alternative Vehicles and Fuels
http://www.nap.edu/catalog.php?record_id=18264

“Transition from Petro-Mobility to Electro-Mobility”, in Stolten and Scherer, eds.,
Transition to Renewable Energy Systems, Wiley-VCH, Weinheim, Germany.

Analyzing the Transition to Electric Drive Vehicles in the U.S., D.L. Greene, C. Liu and S. Park,
forthcoming, Futures.
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The LAVE model is highly generalized.

2 regions rather than geographically detailed.
2 market segments: innovators/early adopters v. majority.
2 types of vehicles: passenger cars and light trucks.

Knowledge of market response is limited.
Innovators, early adopters, majority
Cost of limited fuel availability
Cost of short range/long recharge
Scale economies, learning-by-doing, risk aversion. ..
The model provides a structured framework for integrating

knowledge and assumptions rather than an accurate prediction of
the future.

B




4 Like the NRC study, we took energy prices from the 2011 A

Annual Energy Outlook, and changed the motor fuel tax to
an Indexed Highway User Fee on Energy.

Retail Gasoline Price in California and Section 177 States Electricity Price in California and Section 17 States
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One tipping point is hydrogen infrastructure.

If the rest of US installs early H, infrastructure FCVs thrive.

Estimated Electric Drive Market in Californiaand the Section 177 States: Scenario 1
50%
45%
o 35% 7
5 30% / FCV
2 25% B et
£ m Heavy lifting / B
g 159% \\ ++J,++,+++++++++++ PHEV
10% + -
0 T
2010 2015 2020 20 2030 2035 2040 2045 2050
Estimated Electric Drive Market in the Rest of US: Scenario 1
50%
45%
40% //
o 35% /
2 30% FoV
2 [13 . 1 /
= 20% e
‘EV 15% \ +++,!++++++++++ ——PHEV
0
10% m————
5%
0% it
2010 2015 2020 2025 2030 2035 2040 2045 2050




e

A key premise of the NRC study was that fuel economy & GHG
emissions standards would be tightened through 2050.
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How are these fuel economies achieved?
Reduced load + improved drivetrain efficiency.

TABLE 2% Detals of the Potential Exaolution of a Midsize Car, 20072050

2020 2030 2030 2030
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The retail price projections for light trucks are
similar but ICEs remain the least expensive.

Retail Price Equivalents: Light Trucks
High Volume, Fully Learned
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4 The NRC study assumed the cost of producing
“drop-in” bio-fuel via pyrolysis and refining would
decrease over time to $3-$4 per gallon.

TABLE 3.5 Estimatzs of Fuoture Biofusl Asrailability
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Quantification of the transition costs (market barriers) allows one to
see how network external benefits enable the transition.
(Note: “Price” includes any subsidies)

Dollar Equivalent Utility Index for Hydrogen Fuel Cell Passenger Cars in
California and the Section 177 States: Scenario 2, Majority Consumers
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For BEVSs, availability of recharging is much less of a hindrance but
range/recharge time remains a significant cost. Early adoption
reduces majority’s risk aversion and builds scale economies.

Dollar Equivalent Utility Index for Battery Electric Cars in California
and the Section 177 States: Scenario 2, Majority Consumers
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The implied subsidies are large but are no
longer needed after 2030.

Implied Vehicle Subsidies: Scenario 1
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According to the parameter assumptions, innovators and
early adopters drive the market for at least a decade.

\
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All fuels reduce their WTW emissions. Gasoline
becomes increasingly derived from biomass.

Well-to-Wheel GHG Emissions of Vehicle Fuels
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This graph shows high-volume, fully-learned
iIncremental manufacturing costs.

Cars: Mid-Range Costs

Incremental Direct Manufacturing Costs over 2010 Baseline
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NRC assumed battery costs would decrease
in line with EPA/NHTSA/ARB assessment.

* EV range was assumed constant at 100 miles.

Technology 2010 2030 2050
(Mid/Opt) (Mid/Opt)

BEV battery S/kWh $450 $250/5200 $160/5150
PHEV battery S/kWh $550 $320/5260 $200/5190
HEV battery S/kWh $2,000 $750/5650 $650/5650
FC system S/kW $50 $33/527 §27/$22

° Technological advances were taken as cost reductions.

* However, limited range and long charging times remain

barriers to consumer acceptance.




A significant amount of drop-in bio-fuel
IS IN every scenario.

Drop-in Biotuels (direct replacement for gasoline) can be
produced from cellulosic biomass and introduced without
major changes in delivery infrastructure or vehicles

Achievable production levels at acceptable cost are uncertain,
but the potential is large.
Maximum 2050 production:
45 BGGE/700 Mt biomass/58M acres

Reference Assumption:
13.5 BGGE/210Mt biomass/ 17M acres

Drop-in Biofuels coupled with high efficiency ICEVs and
HEVs could be a major contributor to reducing petroleum
use and GHG emissions.




The historical progress of batteries and fuel cells is relatively clear.
Future progress could be much slower and goals would still be met.

Cost Estimates of Automotive Fuel Cell Systems at Full Scale
and Learning (DTI, 2011, 2009) Plus German's Estimates
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The cost of limited fuel availability is represented by the
capitalized cost of increased time to travel to scarce stations.

PV of Excess Time per Refueling Event
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Costs of limited range/long refueling time, values of public
recharging are capitalized in the price of vehicles.
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The majority resists, innovators/early adopters will

pay more for advanced technologies.

Willingness-to-pay to Avoid Risk or Gain Novelty
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Other key parameters.

® Payback period for fuel savings: 3 years

® Price elasticities of vehicle choice:
Buy/No-buy: -1.0
ICE/HEV/PHEV: -4.8

® Economies of scale

Scale elasticity: -0.2
Full scale: 200,000 units

° Progress ratios: 0.95

® And more...

46




Most of the key parameters are not well
understood. So do a sensitivity analysis.

Parameters Distribution Min Mean Max
Importance of diversity of makes and models to chose from Triangle 0.50 0.67 0.9975932
Value of time ($/hr.) Triangle $10.00 $20.00 $39.86
Maximum value of public recharging to typical PHEV buyer Uniform $500 $1,000 $1,500
Cost of one day on which driving exceeds BEV range Uniform $10,002 $20,000 $29,999
Maximum value of public recharging to typical BEV buyer Uniform $0 $500 $1,000
Importance of fuel availability relative to standard assumption Triangle 0.67 1.00 1.67
Payback period for fuel costs (yrs.) Triangle 2.0 3.0 5.0
a\;::]unr?piig:]r:shold for introduction of new models rel. to std. Uniform 0.80 1.00 1.20
Optimal production scale relative to standard assumptions Uniform 0.75 1.00 1.25
Scale elasticity relative to standard assumptions Uniform 0.50 1.00 1.50
Progress Ratio relative to standard assumptions Uniform 0.96 1.00 1.04
Price elasticities of vehicle choice relative to standard assumptions Uniform 0.60 1.20 1.80
Percentage of new car buyers who are innovators Triangle 5.0% 15.0% 20.0%
Willingness of innovators to pay for novel technology ($/mo.) Uniform $100 $200 $300
Cumulative production at which innovators WTP is reduced by 1/2 Uniform 1,000,000 2,000,000 3,000,000
Majority's aversion to risk of new technology ($/mo.) Uniform -$900 -$600 -$300
Cumulative production at which majority's risk is reduced by 1/2 Uniform $500,000 $1,000,000 $1,500,000
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Transitioning to electric drive vehicles
presents a new challenge for public policy.

The petroleum/ internal—combustion—engine system has been
refined over 100 years of use.

The benetits sought are public goods:
Reduce GHG and other pollutant emissions

Reduce dependence on petroleum

The transition will require 2-3 decades and the “valley of
death” will last about 10 years.

Today, the alternative technologies are not competitive
without subsidies. Will they ever be?

Internalizing external costs likely not enough; may need to
internalize network external benefits too, and more.
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The analysis for CA and 177 states links 2
LAVE models together.

1-year lag
— I —"
CA + 177 States Rest of U.S.A.
V\ I




Benefits exceed costs by about an order of
magnitude (technological success assumed).

(Co-benefits, co-benefits...)

Costs and Benefits of Transition to E-Drive Vehicles in
California and the Section 177 States:Scenario 2
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With comparable US policies lagging by 5 years
there is an earlier, more complete transition.

Estimated Sales by Ve hicle Technology in CA and the Section 177 States:

Scenario 2
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Society’s determination was reflected in assumed
marginal social values for oil and GHG reduction.

Dollars per Barrel of Petroleum

Assumed Values of Social Benefits
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