Three Revolutions in Urban Transportation: How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

Asilomar Conference
Transportation Innovation and Policy in a Fragmenting World
August 23rd, 2017

Lew Fulton,
Co-Director, Sustainable Transportation Energy Pathways program,
UC Davis
Research undertaken by UC Davis and ITDP, part 3 of a series

Global scenario study to 2050 focused on potential 3 Revs impacts on CO2, energy use, costs

Study supported by UC Davis STEPS Consortium and by Climate Works, Hewlett Foundation, Barr Foundation

https://steps.ucdavis.edu/three-revolutions-landing-page/

Three Revolutions in Urban TRANSPORTATION

How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

Lew Fulton, UC Davis
Jacob Mason, ITDP
Dominique Meroux, UC Davis

May 2017

Research supported by:
ClimateWorks Foundation, William and Flora Hewlett Foundation, Barr Foundation
Passenger Transport Revolutions

1. Streetcars (~1890)
2. ICE Automobiles (~1910)
3. Airplanes (~1930)
4. Limited-access highways (1930s….1960s)

2010+
1. Vehicle electrification
 – low carbon vehicles and fuels
2. Real-time, shared mobility
 – less vehicle use
3. Vehicle automation (2025?)
 – Safety benefits
 – Uncertain travel impacts
Some questions and conflicts

• **Automation: lower per-trip costs, lower “time cost” for being in vehicles**
 – Just how much cheaper will it be?
 – Private automated vehicles = longer trips?
 – Empty running (zero passengers) of vehicles
 – Resulting relative costs of private vehicles, shared mobility, transit?

• **Electrification goes with automation – does it really?**
 – Can get the job done with upgraded electrical system (such as hybrids)
 – But electric running will be much cheaper – and durable?

• **Ride hailing: cost savings v. convenience and risk**
 – Complementary or at conflict with public transit use?
 – Will lower costs reduce the incentive to ride share?
Rough guide to the three scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Automation</th>
<th>Electrification</th>
<th>Shared Vehicles</th>
<th>Urban Planning/Pricing/TDM Policies</th>
<th>Aligned with 1.5 Degree Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business as usual, Limited Intervention</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>1R Automation only</td>
<td>HIGH</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>2R With high Electrification</td>
<td>HIGH</td>
<td>HIGH</td>
<td>Low</td>
<td>Low</td>
<td>Maybe</td>
</tr>
<tr>
<td>3R With high shared mobility, transit, walking/cycling</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>YES</td>
</tr>
</tbody>
</table>

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS
Urban passenger kilometers by scenario, USA

- US travel grows significantly except in 3R
- Travel remains fairly car dominated to 2050 – transit travel triples but remains below 20% of pkm.
Urban LDV passenger kms by scenario, USA

- Electric vehicle travel reaches nearly 1/3 of PKMs by 2030
- Automated vehicle travel not significant by 2030 in any scenario, but dominates in 2R and 3R 2050. Results in much higher travel in 2R
Urban non-LDV passenger kms by scenario, USA

- US transit, walking and cycling is flat into the future in BAU and 2R
- Travel in these modes grows dramatically in 3R, doubling by 2030 and nearly doubling again by 2050.
Urban LDV travel (VKm) by scenario, USA

- 2R vehicle travel rises sharply after 2030 due to lower travel costs from automated vehicles.
- 3R vehicle travel flat despite declining vehicle stock, given higher travel per vehicle of public vehicles.
Urban LDV stock evolution by scenario, USA

- 2R stocks nearly completely autonomous by 2050
- 3R stocks strongly decline after 2030, due to lower passenger travel levels, intensive vehicle use and higher load factors.
Energy use by scenario, USA

- Far lower energy use in 2R due to EVs, and in 3R due to low LDV mode shares
Well-to-wheels CO2 by scenario/technology, USA

4DS electricity shown; in 2DS, CO2 from electricity drops to near zero in 2050

CO2 emissions by technology, USA

<table>
<thead>
<tr>
<th>Year</th>
<th>ICE Vehicles</th>
<th>Electric Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>BAU 0.8</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>BAU 0.6</td>
<td>1R 0.01</td>
</tr>
<tr>
<td></td>
<td>2R 0.04</td>
<td>2R 0.03</td>
</tr>
<tr>
<td></td>
<td>3R 0.02</td>
<td>3R 0.01</td>
</tr>
<tr>
<td>2050</td>
<td>BAU 0.6</td>
<td>1R 0.01</td>
</tr>
<tr>
<td></td>
<td>2R 0.03</td>
<td>2R 0.01</td>
</tr>
<tr>
<td></td>
<td>3R 0.01</td>
<td>3R 0.005</td>
</tr>
</tbody>
</table>

ICE Vehicles
Electric Vehicles
Total cost by scenario and mode, USA

- Total societal (out-of-pocket) 3R cost in 2050 is only 2/3 of BAU or 2R cost, thanks to deep cuts in car ownership, energy use, and road/parking requirements.
Supportive Policies – critical to success of the scenarios

• 3R Scenario (Automation + Electrification + **Sharing**):
 – Compact Urban Development policies
 – Efficient parking policies
 – Heavy investment in transit/walking/cycling
 – VKT fees (incl. congestion & emission factors):

![Diagram showing ZOV, SOV, HOV, Minibus Transit, and High Capacity Transit with highest fee on the left and largest subsidy on the right.](image)
A few takeaways

• 2R without 3R could be a traffic nightmare, even with automation traffic benefits.
 – The rebound travel effects of automation should be carefully managed

• A 2R scenario could lead to deep CO2 reductions IF grid electricity is deeply decarbonized
 – A 3R scenarios provides more robust emissions reductions
 – Automation without electrification could increase CO2

• 3R: Sharing must be strongly incentivized, probably through pricing

• Even a super-rapid transition will take 3 decades to complete
 – Private “legacy” vehicles could be an issue; scrappage incentives could be interesting