Sustainable Freight

Asilomar 2017

Pascal Amar – Volvo Group

R. P.

Talking points

- Productivity and sustainability
- Technology selection drivers and obstacles
- Technology integration
- Learning from concept vehicles
- Getting to (near) zero emission vehicles

Productivity is key to a sustainable freight ecosystem

Truly sustainable freight means both environmental and economic sustainability.

Downtime Payload capacity Utilization Maneuverability Routing Driver training Connectivity

Technology selection is a complex process

- There is no 'one-technology-fits-all'
- Emission impact of new technologies depends on how vehicles are used i.e. application
- Technologies must work across multiple applications, markets, infrastructures, etc
- New technologies must provide ROI for customers

Greater connectivity & automation will play a critical role

Connectivity and automated driving solutions will advance efficiencies at the vehicle and system levels.

Education/outreach activities and partnership with other technology companies/public agencies are key to realizing these technologies.

Electrification is a key enabler, in specific applications

Pascal Amar – Volvo Group

Technology evaluation & selection: drayage trucks

Technology evaluation & selection: drayage trucks

PHEV "Ultra"

- Feasibility of PHEV technology & geofencing in port drayage
- Complete vehicle technology package
- ✓ PHEV#1 concept vehicle built & verified

- ✓ PHEV#1 in revenue service >6 months
- ✓ 'self learning' dynamic geofences & refined design to maximize ZE operation
- ✓ PHEV#2 concept built & in revenue service

- Integrate ITS / PHEV / EATS technologies to achieve ultra-low inuse NOx emissions
- Evaluate concept#3 in revenue service
- Evaluate pathway to commercialization

Drayage PHEV – lessons learned

A large battery isn't necessary to deliver Zero Emissions where it matters most 10kWh ESS / >20 miles in ZE mode per day

10/05/16 11/14/16 01/16/17 02/01/17 02/13/17 02/28/17 03/15/17 03/30/17 04/13/17 04/26/17 06/01/1

Marrying existing technologies creates significant new opportunities

GPS & integrated driveline controls maximize Zero Emission operation

Productivity and Technology Integration

Our concept vehicles demonstrate more than just electrification

- ✓ Replaces a wheel loader one size larger
- ✓ Dramatic reduction in noise
- Improved visibility
- ✓ Ease of operation

- Can carry 2,000lb more payload
- ✓ Less rolling resistance and tire scrub
- Improved maneuverability & steering
- ✓ Vehicle specs optimized for drayage operation

Evolutionary improvements at work in drayage PHEV#1

'evolutionary improvements' in PHEV#1

- ✓ Vehicle spec optimization
- Lightweight components
- ✓ Liftable 6x2 pusher axle
- ✓ Aerodynamic configuration
- ✓ LED lighting & reduced parasitics
- → Boosted Zero Emission range by ~25%
- → Reduced hybrid component size & cost

(and they improve freight efficiency <u>today</u>)

SuperTruck: amplifying effect of incremental improvements

Bumper-to-bumper Aerodynamic optimization

High-efficiency Integrated Powertrain

Lightweight Designs & Materials

Reduced Rolling Resistance

Predictive Energy Management

Idle-free Hotel Mode

88% MORE

2

SuperTruck Technology Content

Available today

Lightweight trailer LED interior lighting & headlamps Trailer gap fairing Trailer tail fairing Wide base low RR tires Aluminum wheels Aluminum drive shaft TurboCompound Downspeeding 'Eco-roll' 6x2 axle configuration "wave" piston Common rail fuel injection 1-box aftertreatment muffler Engine downsizing

Evolutionary improvements

Improved cab thermal insulation Trailer full skirts Optimized bumper Dual-zone 24V A/C system 15kWh energy optimized APU Predictive kinetic energy recovery Relocated A/C condenser Predictive cruise control Cab shape Roof mounted solar panel Parked fresh air intake Variable oil & coolant pumps I ow friction oil PCU friction reduction Aluminum cab side walls

Breakthrough concepts

Curved & sloped windshield Cab position Artificial windows Rankine Waste Heat Recovery Light gauge trailer wire harness >40% lighter chassis Composite trailer aero devices Lightweight (CF) hood Lightweight (CF) roof Lightweight (CF) chassis fairings Covered cab steps Tractor bogie fairing

We can address NOx today while we work on the long term

Evolutionary improvements are the foundation of sustainable freight

- They reduce energy requirements & increase freight capacity
- They prepare the market and increase chances of earlier commercialization
- They reduce risk of product reliability issues (i.e. market push-back)
- They reduce total product cost increase to the customers
- They pave the way for societal acceptance
- → Start improving sustainability of goods transport *today*
- → Increase chances of market acceptance / real-world impact tomorrow
- → Continuously integrate mature solutions instead of forcing technologies to mature faster

Can Policy Help Expedite Adoption of New Technologies?

YES!.. by removing obstacles (not by picking a winning technology)

- Cost of compliance on current & new technology: R&D burden curbs innovation
- Local & regional regulations: waivers facilitate cross-pollination between markets
- Absence of clear technology policy positions and deployment timelines hinder connected vehicle infrastructure.
- Absence of guidelines for testing and validating levels of automated driving hinder market introduction and adoption
- Slow, complex & expensive permitting hinders critical investments for some concepts

Summary & closing thoughts

- The challenges of bringing new technologies to market are far from being just technical
- The real world impact of a technology strongly depends on how (many) vehicles are used
- We need to address NOx today while we keep working on technologies for tomorrow
- Evolutionary improvements are an integral part of the roadmap to meeting California's long-term air quality goals
- Sustainable transport solutions –for freight and people- require technologies that sustainably address environmental, economical, and safety challenges worldwide